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Consider a finite difference approximation of the Crank-Nicolson type, using a local 
mesh refinement to an initial-boundary value problem for the parabolic equation 

m(X)& = wbd, + f 6, t). 

We consider the above difference approximation to u(n, t) on a grid pattern, where the 
middle third of the unit interval is refined with respect to the rest of the interval. Using 
the standard matrix arguments, we prove the matrix stability (spectral radius less than 
one) for the above class of problems. The local mesh refinement is achieved without 
loss of the second-order spatial accuracy, or of computational efficiency in solving the 
resulting equations. In two dimensions, we use our techniques to adapt the alternating 
direction schemes to a general mesh refinement pattern. Numerical experiments are 
presented which illustrate the computational effectiveness of the mesh refinement 
technique. 

1. INTR~OUC~~N 

Mesh refinement schemes for the numerical solution of initial-boundary value 
problems of parabolic type were proposed by Ciment in [l]. After obtaining 
very general results on difference shemes for initial-boundary value problems, 
Osher [3] and Varah [6] used the mesh refinement representation developed by 
Ciment in [2] to show that these parabolic methods are convergent. However, 
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their proofs were for implicit schemes on an infinite interval, a noncomputable 
case, since it gives rise to a doubly infinite matrix system. 

In this paper we consider the actual computational problem that one faces in 
performing the implicit mesh refinement calculations on a finite interval. Failing 
to prove convergence, we present a proof of the matrix stability (eigenvalues all 
less than one in absolute value [7]) of the associated iteration matrix. 

In two space dimensions, we show how to adapt the alternating direction schemes 
of Peaceman and Rachford [4] to a general mesh refinement pattern. For this case, 
we present the results of numerical experiments which indicate under what 
circumstances the various methods may be useful. 

Some of the computations in this paper were carried out by J. P. Brzozowski 
of the Denver Research Center of Marathon Oil Company, and we welcome this 
opportunity to express our thanks to him. 

2. MESH REFINEMENT SCHEMES 

We are interested in approximating the solution of the following initial-boundary 
value problem. Consider 

on the semi-inhnite strip {(x, t) : 0 < x < 1, t > 0}, where m, S, and f are given 
functions satisfying 

(9 44 E CP, 11 and pin, m(x) = g > 0, 
.I 

(ii) S(X) E Cl[O, l] and ,~I& s(x) = 2 > 0. . . 

Without loss of generality we take for boundary conditions 

u(0, t) = u(l, t) = 0 0 > 01, (1’4 

and assume the initial condition is given by 

4x, 0) = v,(x) (0 d x < l), (14 

9 being at least continuous on [0, I]. 
We approximate u(x, t) with a grid using a uniform time step, but with two 

different spatial mesh patterns. More precisely, let h > 0 and k > 0 be given, and 
let A4 > 1 be a positive integer. 
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We define the grid R by 

I t, = nk, n = 0, 1, 2,... 

O)L 
M’ p+l <j<q. 

x, + (j - dk q+l<j<N 
xN+l = x, + (N + 1 - q)h = 1 

Note that p, q, and N depend on the refinement desired. 
As an example, for h = &, and refining the grid in [$, $1 by a factor of M = 3 

(hence, p = 2 and q = S), we would have the grid depicted as 

0 
1 2 7 8 3 1011 4 5 
6 

-- -- 
6 18 18 6 18 18 6 6 1 

We define v~,, as the difference approximation to U(X~ , t,J which solves the 
following standard system of equations 

vi.0 = d%> 

%(%?I+, - %?a) = ~ceh-l%l,n+l - 6-l + Si> Vj,n+l + w~+I,n+ll 
+ (1 - @%1VM.n - (%-1 + 4 0j.n + Wi+1,nl~ 
+ @ia, Pa) 

where h = (k/h2), mi = m(xj), si = s(xf + (h/2)), and fjsn = f(xj , t,J, for 
l,Cj,<p-1 andq+l<j,<N.ThenumberBE[O,l]maybechosento 
obtain several of the well-known difference schemes (Richtmyer and Morton [5]). 
(For example, 0 = 4 corresponds to the Crank-Nicolson scheme, and 19 = 1 is 
the standard implicit method.) For p + 1 < j < q - 1, we use (2a), with h 
replaced by (h/M). Note that this changes h to XM2, and changes S(X~ + (h/2)) to 
S(X~ + (h/2M)). There remains to define equations for the two interface points, 
x, and X, . For these we may use several approximations: 

(i) The 3-point central difference formula for nonuniform spacing, which 
is first-order accurate (see [7] Page 178). 

(ii) A 4-point difference formula for nonuniform spacing, which is second- 
order accurate. 

(iii) The standard central difference formula, second-order accurate, but 
according to the consecutive ordering we have adopted, this involves two adjacent 
points and one point a distance of M points away. We call this the integer-fit 
method. 
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In our numerical experiments, we found that the third approximation is generally 
the most accurate method. In the following, we shall provide a proof which 
indicates the matrix stability [7] of our mesh refinement problem, using the 
approximation of type (iii). Our proof will clearly hold for the approximation of 
type (i). For type (ii), however, no such proof was found. 

For type (iii) we are able to maintain an overall accuracy of O(P), and we need 
very little extra computational effort, as will be demonstrated later. Hence, we 
take the remaining two difference equations as 

m9(v9.n+l - 44 = WLb-l.n+l - (kl + s9) v,.~+~ + w,+M.~+J 
+ (1 - @b9-lV9-1.n - 69-l + s9) v9.n + S9V9+AI,nlI 

+ Win P-9 

and 

mq(vq.n+l - q,n v 1 = 4&-1%~ma+1 - 6%-l + %I %,n+1 + %%+I,n+ll 
+ (1 - @bq-lvq-M,~ - (47-l + %> van + %%+l.nl~ 
+ k&n - (24 

We now study the stability of this family of difference schemes. To accomplish 
this, let us rewrite the difference scheme in matrix notation as 

v, = @ 

(D + AdJ) vn+1 = [D - X(1 - B)J] V, + kF,, , 
(3) 

where 

), @f%j 

D = diag{m, , m2 ,..., mN}, and J is an almost tridiagonal matrix. In fact, its jth 
row is {O,..., 0, --sj-1, q-1 + sj, --s, 3 O,..., 0}, for 1 < j d p - 1 and q + 1 < 
j < N; and 

(0 ,..., 0, -M?sj~l ) Mysj_l + Sj), -M%, , 0 )..., O}, for p-j-1 Qj<q-1. 

Each of the two remaining rows corresponding to the interfaces has three nonzero 
elements in them, one on the main diagonal, one beside it, and one a distance M 
away. Row p is 

(0 ,...) 0, -s,_1 ) s,-1 + s, , 0 ,...) 0, -s, ) 0 ,...) O}, 
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and row q is 

(0 )...) 0, -s,-1 , 0 )..., 0, s,-1 + s, , -s, , o,..., 01. 

It is easily seen that D-l.J is irreducible, and diagonally dominant (Varga [7]). 
Hence, by an extension of Gerschgorin’s theorem, its eigenvalues 7i satisfy 

Re(Ti) > 0, lfi<N. 

Thus, the matrix D + XOJ = D(I + XBD-lJ) is nonsingular, insuring that V,,, 
is always uniquely detied. Solving for V,,, in (3), we obtain the iteration matrix 
C = (I + ;\kD-‘J)-l[l - A(1 - 8) D-lJ]. 

To prove convergence, one needs to show that (( Ck (I is uniformly bounded [5] 
as the grid sizes tend to zero. For the cases 8 = 0, 1, the standard maximum 
principle arguments yield such proofs. However, for general 8, we were unable to 
prove convergence. An obviously necessary condition for convergence, referred 
to as matrix stability (Varga [7]), requires that the spectral radius of C be less 
than or equal to one. This latter (weaker) type of stability holds for (2). 

THEOREM. The mesh refinement scheme (2) gives rise to a stable iteration matrix 
when : 

(a) 0 < e < a, if 

where S = ~II..~ s(x), 

(b) ~~O~l,f0rdlh>O. 

Proof. The eigenvalues pi of C are given by 

CL. = 1 - w - 0) Ti 2 i + xeTi 3 1 <i<N. 

Let 7 = 01 + $3, 01, /I real, be an eigenvalue of D-‘J. We know that 01 > 0. By 
simple algebra we get, using (4) 

1 > j pi/z= p - h(i - e)q + [h(i - e)jp 
[i + xe42 + wgi2 

is true if and only if 

is true. 
-2o1x + xyi - 2ep + fly < 0 
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Since (Y > 0, for 4 < 0 < 1, the above inequality is satisfied for all h > 0. 
When 0 < 0 < 4, the above inequality is true if 

An upper bound on A, which insures our inequality, may be determined by finding 
the minimum of 

where 01 + ip lies in the union of the Gershgorin discs of D-% A typical disc 
9j has the form 

sj = {z : / z - rj j < rj , where rj = (P’J)~~}. 

Hence, 

so 

Finally, if we take 

then Ipi/ < 1. 

(Ol - rj)2 + p” < rj2. 

d% PI d 
01 1 

a2 + rj2 - (a - rJ2 = 2rj ’ 

h < 2(1 - %) SM2 ’ 

3. SOLUTION OF EQUATIONS 

For 8 > 0, the solution of (3) at each time step involves solving a linear system 
of equations of the form 

where A is almost a tridiagonal matrix and B is a vector formed from known 
quantities. Solving this system is best accomplished by initially factoring A as the 
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product of a lower unit triangular matrix L, and an upper triangular matrix R 
(Wilkinson [S]), and then, at each time step, solving two triangular systems of 
equations. 

Since A is nearly tridiagonal, one would expect L and R to have nearly the same 
form-namely, bidiagonal-as when A is tridiagonal. We show now that very 
few nonzero elements are added in L and R, due to the form of A. 

Let A = (Q) be a N x N matrix where aij = 0, if 1 i - j 1 > 1, except 
a B,D+m # 0 and u*,~-~ # 0. Letting L = (tij) and R = (rii), one easily verifies 
that the nonzero elements of L are 

eiii = 1 (i = 1, 2,..., N) 

cz,i-l = -.L- 
li-l,i-1 

G.i-1 (i = 2,..., N- 1; i # q) 

e&,-M = 
1 

ra-M,q-M 
aqsq-M 

G9,q-i = & (aq.q-i - e9p9-i-lr9-i-l,9-i) (i = M - 1, M - 2 ,..., l), 

and the nonzero elements of R are 

r I,1 = %l 

rii = Uii - ti,i-,ri-, i (i = 2,..., N) 

ri-1.i = ai-l,i (i = 2, 3,..., N;i#p+m) 
r n,v+M = aB,efM 

rp+i,p,+M = avii.D+M - ~~+i.P+i-lrp+i-l,p+iu (i = 1, 2 ,..., M - 1). 

An operation count (one operation is either a multiplication or division) shows 
that a total of 2(N - 1) + 3(M - 1) operations are required to compute L and R, 
initially. The term 3(M - 1) is due to the “extra” elements of A. To solve the two 
tirangular systems at each time step, 3N - 2 + 2(M - 1) operations are required, 
where the factor 2(M - 1) is, again, from the ,,extra” elements of A. Clearly, M 
will be small compared to N, and so, very little additional work is required to solve 
the implicit system of equations. 

4. HIGHER DIMENSIONS 

Consider the model initial-boundary value problem 

Ut = u,, + u,, + f(x, Y, 0; 0 <x,y & 1 t>o 

dx, Y, 0) = @,(x, Y>, 
(6) 
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I ‘+ 2+ 3 4 5 
+ + + 

6+ 7 30 31 8 32 33 9 P 

34 . . . . . 40 

II+ 

41 1: . . . . 47 

12 i . . . . 17 . 16 +t9 

46 . . . . . 5.q 

55 . . . . . 61 

20+ 

1 ‘;rj-+26 2: +2e + 29 

‘Ay,.; 1 
AxI Ax*= Ay2=~ 

FIGURE 1 

with the solution prescribed on the sides of the square. We treat the situation of 
refining the mesh in a region of interest (see Fig. 1) while maintaining a uniformly 
coarser grid elsewhere. The difficulty usually encountered is a sharp increase in 
the complexity of the equations to be solved. Our method avoids this by adapting 
the alternating direction (ADI) scheme of Peaceman and Rachford [4] to our 
general mesh refinement pattern. The ADI equations are 

a”, k)n+1’2 + <s,2v,,k)n] + +J;(;k , 

ur”$’ - v;;1/2 = ; [(83Jk) 
At 

%+1/Z + (Sy2vj,k)fi+l] + -#l/Z, 

where h = At/Ax2, and (Sx2vj,k)n = vxl& - 2v;f, + &&. 
With ADI, it will be seen that our one-dimensional method becomes the basic 

component for higher dimensional mesh refinement problems. We were unable 
to prove the matrix stability of this procedure, but numerical experiments presented 
in Section 5 indicate that the method is accurate. 
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For simplicity, we consider a mesh pattern where the region 

D, = ((x, Y) : f f x < 3,i < Y d $1 

has different (finer) mesh spacings than the remaining region. Namely, 

(8) 

Ax,=Ay,=$inD,; Ax, = Ay, = i outside D, . 

The way one numbers (orders) the mesh points (unknowns) can significantly 
alter the ease with which one can solve the resulting equations. Figure 1 exhibits 
the resulting pattern, containing 65 points and their ordering. 

We now describe the approximation for the mesh pattern of Fig. 1. The generali- 
zations to more complicated patterns will be straightforward and, thus, will be 
omitted from our discussion. Initially, say t = IZ At, we solve Eq. (7) for the grid 
values at the points l-29. Note that to obtain these values on any one line, we 
solve the associated system of equations along that line as in a one-dimensional 
implicit method of Section 2. For this example, on the lines (l-5}, {6-lo}, (20-24}, 
(2529}, we obtain the standard tridiagonal systems. In this simple pattern only 
one “coarse” line cuts through D, , namely, points (11-19). The system for this 
line can be solved by the one-dimensional methods of Section 2. 

Among values at (l-29}, we have also obtained the values, at time t = (n + 4) At, 
along all the “coarse” points of D, . The data at the points (7, 12, 21, 9, 18, 23) 
allows us to use any desired degree of interpolation to obtain the values at the 
points (34, 41, 48, 55, 40, 47, 54, 61). Now the x sweep inside D, is carried out, 
using uniform alternating direction on (34-61). Completing this, we now inter- 
polate in the data on the top and bottom of D, , at points (30-33) and (62-65). 
Note that we describe this interpolation at the end to emphasize that in doing 
the x sweep in D, , one uses the data from t = n At on the top and bottom of D, 
in the explicit part of (7). This completes the x sweep, and all our grid values are 
at t = (n + 4.) At. The y sweep is carried out analogously, and completes the full 
time step. 

In the previous example, the method on each line is the uniform grid method, 
except on the lines cutting through D, . To investigate which condition is best to 
use at the interface points, we used all interface conditions listed in Section 2 in 
several computational experiments. 

V. COMPUTATIONAL RESULTS 

We solved Eq. (la) on the interval [0,4], using three different grid regions. The 
true solution U(X, t) = exp[x( -(37/6) + (13/6) x) + t] grows very rapidly near 
the right side. Starting with a Ax, = .20, we refined, at x, = 3.0, by a factor of 10, 



522 CIMENT AND SWEET 

FIG. 2A. Crank-Nicolson Percent Error, IO:1 Mesh Ratio at X = 3.0, 20 time steps. 
A 4PT; 03PT; DINT. 

To.12 

FIG. 2B. Crank-Nicolson Percent Error, 4:l Mesh Ratio at X = 3.5. A 4PT; 0 3PT; 0 INT. 
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so that dx, = -02, and again refined at about X, = 3.5, down to dx, = XXX, 
and dt = .Ol. The computing times for all methods were within a 2 y0 difference 
of each other. 

The results shown in Figs 2A and 2B are characteristic for all our calculations. 
Namely, the three-point method causes an abrupt oscillation of the approximate 
solution, while the other two methods are smoothly varying across the refinement 
interface. For smooth problems, even though this overshoot creates a larger 
error for the three-point method, it will eventually be damped out, and can 
actually cause an improvement of the error profile after many time steps. However, 
in most situations the refined area is usually changed after several time steps, and 
in such cases one would expect that the three-point method might introduce many 
oscillations. 

TABLE I 

Ax, = Ay, = l/15; Ax, = Ay, = l/90; PI = P, = 8; At = 2 x 10-k 

Alternating direction t, time EC Eint 

Mesh refinement 

(a) Integer-fit” 

(b) 4-point 

(c) 3-point 

IOAr 3.7 x 30-2 7.6 x lO-s 

1OAt 3.1 x 10-Z 7.8 x 10-B 

1OAt 5.5 x 10-z 1.2 x 10-Z 

a For the entries in (a), EC is a 5 % relative error while Eint is 0.12 %. 

In Table I, we list the results of solving (6) by using our method, with the three 
interface conditions of Section 2. 

We took the analytical solution as 

4~ Y, t> = (t +! a)p . ew i 
(x - 1/2y + (u - w 

-4(t + a) 1 ’ 

with j3 = 40 and OL = l/432. 
To describe the accuracy of the refined scheme away from the interface, we 

compare the error in the interior of D, at points at a distance of at least, a coarse 
mesh-width away from the boundary of D, . The maximum deviation of our 
approximation from the solution over all such points we denote by Eint . The 
maximum error over the remaining points in D, and over all the coarse points, 
we denote by E, . Note that, for all our calculations, we always used third-order 
Lagrange interpolation along the interface. 

For the time interval indicated in Table I, this function exhibits large gradients 
near D, . In fact, at t = 0, u(x., y, 0) has a maximum value of 10.8, and U, , U, 
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take on values greater than 80 in absolute value in D, . However, the region of 
large gradients begins to spread out, and our method remains an effective compu- 
tational procedure only if we have a dynamically changing grid. In this case, the 
relative errors reflect the effectiveness of the refinement technique. 

TABLE II 

Integer-fit: 10 time steps; At = 0.006 

-5 &t Work estimate 

1. No refinements 
Ax = Ay = l/l5 0.004608 0.010235 “(15)? 

2. No refinement 
Ax = Ay = l/60 0.000277 0.000671 h16(15)2 

3. Refinement 
Ax, = Ay, = l/l5 

Pi = P2 = 4 0.00506 0.00201 ~2.77(15)~ 

In Table II, we show the results for a case where the region of sharp gradients 
is more static. We solved for U(X, y, t) = 1 + exp[--2Ot[(x - i)>” + (y - $))“I] 
a solution of (6) on D, as in (8), using the integer-# method. With the mesh 
refinement, we achieve an increase of accuracy by a factor of, at least, five over the 
interior square (much more away from the interface), by using only 2.77 as many 
operations. As shown in Table II, the error, with no refinement, is inversely propor- 
tional to the number of grid points. Thus, the only other way to have obtained 
this increased accuracy in the interior region would have been to use a uniform grid 

Bx=By=l--. 
15 2/5 

This would have required nearly twice as much storage and calculation as compared 
to the mesh refinement scheme. 
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